Breathing mode vibrations and elastic properties of single-crystal and penta-twinned gold nanorods.

نویسندگان

  • Yong Gan
  • Zheng Sun
  • Zhen Chen
چکیده

The acoustic vibrations of individual single-crystal and penta-twinned gold nanorods with widths from ∼7 to ∼26 nm are studied using atomic-level simulations and finite element calculations. It is demonstrated that the continuum model in the limit of an infinite rod length could be used to describe the breathing periods of nanorods with an aspect ratio as small as ∼2.5, in combination with bulk material elastic constants. The elastic moduli of gold nanorods are determined via their atomistically simulated extensional periods and the dispersion relation based on long-wavelength approximation. The twinned nanorods become stiffer as the width is reduced, which is in contrast to the size dependence of the modulus in single-crystal nanorods. Further finite element calculations for the breathing periods of nanorods are performed using isotropic elastic constants of bulk gold. We find that the breathing vibrations of the penta-twinned nanorods are more affected by the crystal structure effect than those of single-crystal nanorods, because a smaller range of crystal directions perpendicular to the long axis is involved in the breathing vibrations of twinned nanorods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing silver deposition on single gold nanorods by their acoustic vibrations.

Acoustic vibrations of single gold nanorods coated with silver were investigated. We used single-particle pump-probe spectroscopy to monitor the silver deposition through the particle vibrations. Two vibration modes, the breathing mode and extensional mode, are observed, and the vibrational frequencies are measured as functions of the amount of silver deposited on single gold nanorods. The brea...

متن کامل

Damping of acoustic vibrations of immobilized single gold nanorods in different environments.

We present measurements of the acoustic vibrations of single gold nanorods deposited on a glass substrate immersed in air and water by ultrafast pump-probe spectroscopy. The nanorods display two vibration modes, the breathing mode and the extensional mode. The damping time of the two modes is influenced by the environment, and a reduction of the quality factor is observed when the particles are...

متن کامل

Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis

Gold nanorods were prepared via a seed-mediated sequential growth process involving the use of citratestabilised seed crystals and their subsequent growth in a series of reaction solutions containing [AuCl4] , ascorbic acid and the cationic surfactant cetyltrimethylammonuim bromide (CTAB). Electron diffraction analysis and HRTEM images of mature nanorods showed superpositions of two specific pa...

متن کامل

Validation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)

In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...

متن کامل

Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires

Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 32  شماره 

صفحات  -

تاریخ انتشار 2016